Чем отличается синхронный двигатель от асинхронного

Правила эксплуатации асинхронного ветрогенератора

Такой ветряк обладает рядом особенностей, которые нужно учитывать при эксплуатации:

  • Будьте готовы, что КПД готового устройства будет постоянно колебаться (в пределах 50%). Устранить этот недостаток невозможно, это издержки процесса преобразования энергии.
  • Позаботьтесь о качественной изоляции, а также заземлении ветрогенератора. Это обязательное требование безопасности.
  • Сделайте кнопки для управления устройством. Это значительно упростит его использование в дальнейшем.
  • Кроме того, предусмотрите места для подключения измерительных приборов. Это обеспечит вас данными о работе вашего агрегата, позволит проводить диагностику.

Места установки

Снижение напряжения тока зависит от расстояния блока до камеры наблюдения и от температуры воздуха. Чем дальше от места наблюдения находится источник питания, тем с большим запасом напряжения должен быть ток на выходе с той целью, чтобы на входе в камеру значение напряжения было 12 вольт. При работе в отрицательных температурах напряжение в питающем кабеле также снижается. Отлично проработавшие в летний сезон камеры не смогут также качественно отслеживать события зимой. И, возможно, в мороз перестанут включаться.

Установлено, что максимальное удаление камеры от блока питания возможно на 100-130 м при использовании кабеля с диаметром проводника 0,5 мм.

При необходимости запитать несколько камер через 1 блок повышенной мощности (13,5 вольт и больше), чтобы приборы не сгорели, нужно подобрать кабель с большим сечением и такой длины, чтобы в них поступил ток с напряжением не больше 12 вольт. Вначале необходим расчет по электротехническим формулам.

Для соединения в системе наблюдения применяют гибкие выводы из коаксильного кабеля, каждый из которых имеет разъем. Их маркирующий цвет: для видеосигнала — желтый, питание — красный, общий — черный. Способы соединения — BNC-разъемов — пайка, обжим, накручивание, под винт. BNC-разъем, используемый для подключения видеокамер, чаще всего под винт или накручивающийся. Что представляет из себя каждый названный разъем? Посмотрите их фото. Но опытные монтажники советуют для соединения в уличных камерах применять разъем способом скрутки.

В зависимости от места установки источников питания существуют:

  • для помещения
  • для улицы
  • стабилизируемые и нестабилизируемые

Способ 1

В Интернете нашел статью о том, как переделать генератор автомобиля на генератор с постоянными магнитами. Можно ли использовать этот принцип и переделать генератор своими руками из асинхронного электродвигателя? Возможно, что будут большие потери энергии, не такое расположение катушек.

Двигатель асинхронного типа у меня на напряжение 110 вольт, обороты – 1450, 2,2 ампера, однофазный. При помощи емкостей я не берусь делать самодельный генератор, так как будут большие потери.

Предлагается пользоваться простыми двигателями по такой схеме.

Если изменять двигатель или генератор с магнитами округлой формы от динамиков, то надо их устанавливать в крабы? Крабы – это две металлические детали, стоят на якоре снаружи катушек возбуждения.

Если магниты надевать на вал, то вал будет шунтировать магнитные силовые линии. Как тогда будет возбуждение? Катушка тоже расположена на валу из металла.

Если поменять подсоединение обмоток и сделать параллельное соединение, разогнать до оборотов выше нормальных значений, то получается 70 вольт. Где взять механизм для таких оборотов? Если перематывать его на уменьшение оборотов и ниже питание, то слишком упадет мощность.

Двигатель асинхронного типа с замкнутым ротором – это железо, которое залито алюминием. Можно взять самодельный генератор от автомобиля, у которого напряжение 14 вольт, сила тока 80 ампер. Это неплохие данные. Двигатель с коллектором на переменный ток от пылесоса или стиральной машины можно применить для генератора. На статор установить подмагничивание, напряжение постоянного тока снимать со щеток. По наибольшему ЭДС поменять угол щеток. Коэффициент полезного действия стремится к нулю. Но, лучше, чем генератор синхронного типа, не изобрели.

Решил испытать самодельный генератор. Однофазный асинхронный мотор от стиралки малютки крутил дрелью. Подключил к нему емкость 4 мкФ, получилось 5 вольт 30 герц и ток 1,5 миллиампера на короткое замыкание.

Не каждый электромотор можно использовать в качестве генератора таким методом. Есть моторы со стальным ротором, имеющие малую степень намагниченности на остатке.

Необходимо знать разницу между преобразованием электрической энергии и генерацией энергии. Преобразовать 1 фазу в 3 можно несколькими способами. Один из них – это механическая энергия. Если электростанцию отсоединить от розетки, то пропадает все преобразование.

Откуда возьмется движение провода с повышением скорости, ясно. Откуда магнитное поле будет для получения ЭДС в проводе – не понятно.

Объяснить это просто. Из-за механизма магнетизма, который остался, образуется ЭДС в якоре. Возникает ток в статорной обмотке, который замкнут на емкости.

Ток возник, значит, дает усиление на электродвижущую силу на катушках роторного вала. Появившийся ток дает усиление электродвижущей силы. Электроток статорный образует электродвижущую силу намного больше. Это идет до установления равновесия статорных магнитных потоков и ротора, а также дополнительные потери.

Размер конденсаторов рассчитывают так, что на выводах напряжение достигает номинального значения. Если оно маленькое, то снижают емкость, то повышают. Были сомнения по поводу старых моторов, которые якобы не возбуждаются. После разгона ротора мотора или генератора надо ткнуть быстро в любую фазу малым количеством вольт. Все придет в нормальное состояние. Зарядить конденсатор до напряжения равному половину емкости. Включение производить выключателем с тремя полюсами. Это относится с 3-фазному мотору. Такая схема используется для генераторов вагонов пассажирского транспорта, так как у них ротор короткозамкнутый.

Как сделать своими руками?

Для начала стоит уточнить, что с нуля создать асинхронную мобильную станцию не получится. Максимум, что можно сделать, – это изготовить ротор без переделки или модернизировать двигатель асинхронного типа в альтернативную конструкцию.

Для проведения работ по модернизации ротора достаточно запастись готовым статором от мотора и провести ряд экспериментов. Главная идея сборки самодельного генератора заключается в использовании неодимовых магнитов. С их помощью удастся обеспечить ротор необходимым количеством полюсов для выработки электрической энергии.

Посредством наклеивания магнитов на заготовку, которую предварительно необходимо посадить на вал, и соблюдения полярности и угла сдвига получится добиться нужного результата. Магнитов потребуется много, минимальное количество составляет 128 штук. Готовая конструкция ротора подгоняется к статору. При выполнении этой процедуры необходимо предусмотреть зазор между зубцами и магнитными полюсами ротора. Он должен быть минимальным.

В процессе важно регулярно охлаждать конструкцию, чтобы предотвратить появление деформаций и утерю магнитных свойств. Если все сделано правильно, то генератор будет работать исправно

В процессе создания асинхронного генератора может возникнуть только одна проблема. В домашних условиях трудно изготовить идеальную конструкцию ротора, поэтому если есть возможность воспользоваться токарным станком, то лучше ею не пренебрегать. Кроме того, на подгонку деталей и их доработку потребуется много времени.

Еще один вариант, с помощью которого можно получить генератор, – это преобразование асинхронного двигателя, используемого в автомобилях. Дополнительно следует приобрести электромагнит, мощность которого будет соответствовать требованиям по отношению к будущему оборудованию. Стоит отметить, что при поиске двигателя нужно учитывать, чтобы его мощность была на половину выше показателя, которого хочется добиться в генераторе.

Чтобы получить нужную конструкцию и организовать ее эффективную работу, потребуется приобрести 3 модели конденсаторов. Каждый элемент должен быть способен выдержать напряжение в 600 и более В.

Реактивная мощность генератора асинхронного типа имеет связь с емкостью конденсатора, поэтому вычислить ее можно по формуле. Стоит отметить, что при повышении нагрузки мощность генератора растет. Таким образом, чтобы добиться стабильного напряжения в сети, потребуется увеличить емкость конденсаторов.

Про принцип работы асинхронного генератора смотрите в следующем видео.

Другие конструкции электрогенератора

Бензиновый вариант не является единственным. Заставить вращаться вал электродвигателя можно разными способами. К примеру, с помощью ветряка или водяного насоса. Не самые простые конструкции, но именно они позволяют отойти от потребления энергоносителя в виде бензина.

К примеру, собрать гидрогенератор своими руками тоже несложно. Если возле дома протекает речка, ее воду можно использовать в качестве силы для вращения вала. Для этого в ее русло устанавливается колесо со множеством емкостей. С помощью этой конструкции можно создать поток воды, который будет вращать турбину, прикрепленную к валу электродвигателя. И чем больше объем каждой емкости, чем чаще они установлены (увеличивается количество), тем большей мощности водяной поток. По сути, это своеобразный регулятор напряжения генератора.


Схема ветрогенератора

С ветровыми генераторами все немного по-другому, потому что ветровые нагрузки не являются величинами постоянными. Вращение ветряка, которое передается валу электрического мотора, необходимо регулировать, подстраивая под необходимую величину частоты вращения вала электродвигателя. Поэтому в этой конструкции регулятор напряжения – это обычный механический редуктор. Но здесь, как говорится, палка о двух концах. Если ветер снижает порывы, необходим повышающий редуктор, если, наоборот, увеличивает, нужен снижающий. В этом и заключается сложность сооружения ветрового электрогенератора тока.

Эксплуатация

Перед запуском электрогенератора необходимо сначала провести его регулировку. В первую очередь настраивают частоту работы устройства. Сделать это можно двумя способами:

  1. поменять конструкцию агрегата, заранее предусмотрев, какое количество полюсов необходимо для работы электромагнита;
  2. обеспечить требуемую частоту вращения вала без каких-либо изменений в конструкции.

Яркий пример – тихоходные турбины. Они обеспечивают вращение ротора в 150 оборотов в минуту. Для настройки частоты используют первый способ, увеличивая количество полюсов до 40 штук.

Несмотря на то что ЭДС индукции устройства связана с ротором и его вращениями, из-за требований безопасности нельзя разбирать конструкцию, чтобы поменять параметр.

Изменить величину ЭДС можно посредством регулировки образующегося магнитного потока. Его необходимо будет увеличить или уменьшить. За величину показателя отвечают витки обмотки, а точнее, их количество. А также повлиять на мощность магнитного потока можно посредством тока, который образует катушка.

Наладка подразумевает включение в цепь нескольких катушек. Для этого необходимо воспользоваться дополнительными реостатами или электронными схемами. Второй вариант требует настройки параметра за счет внешних стабилизаторов. Это обеспечивает надежное обслуживание.

Преимущество синхронной мобильной станции – это возможность синхронизации с другими электромашинами подобного типа. При этом во время подключения удается сопоставить скорости вращения и обеспечить нулевой фазовый сдвиг. В связи с этим мобильные электростанции востребованы в промышленной энергетике, где очень удобно их использовать в качестве резервного источника тока для повышения производственных мощностей в случае больших нагрузок.

О синхронном и асинхронном генераторе смотрите далее.

Технические параметры

Работа генератора определяется зависимостью между основными величинами, которые являются его главными характеристиками:

  • отношения между величинами на холостом ходу;
  • внешние параметры;
  • регулировочные значения.

Внешняя характеристика генератора постоянного тока крайне важна, так как раскрывает взаимосвязь напряжения и нагрузки. Она отображена на графике. Согласно последнего наблюдается незначительное уменьшение напряжения, но оно почти не зависит от нагрузочного тока (если сохраняется скорость оборотов двигателя).


Внешняя характеристика ГПТ

В устройствах с параллельным возбуждением больше выражено влияние нагрузки на напряжение. Это объясняется уменьшением тока в обмотках. Чем выше ток нагрузки, тем быстрее будет уменьшаться напряжение на зажимах агрегата.


Свойства ГПТ с параллельным возбуждением

Если увеличить величину тока при последовательном возбуждении, то вырастет ЭДС. Но напряжение не достигнет высокого значения электродвижущей силы, так как часть энергии уйдет на потери от вихревых токов.


Свойства ГПТ с последовательным возбуждением

При достижении напряжением максимального значения и одновременным увеличением нагрузки, первое начинает стремительно снижаться в то время, как кривая электродвижущей силы продолжает подниматься. Это считается большим недостатком, ограничивающим использование генератора такого типа.

В устройствах со смешанным возбуждением предвиденные встречные подключения обеих катушек. Конечная сила при однонаправленном подключении равняется сумме векторов намагничивающих сил, при встречном — их разнице.

Вам это будет интересно Особенности балласта 4х18

При равномерном увеличении нагрузки напряжение на зажимах почти не меняется. Оно будет расти лишь тогда, если число проводов последовательной обмотки превышает число витков, которое соответствует номинальному возбуждению якоря.


Свойства ГПТ со смешанным возбуждением

Генераторы со встречным включением применяются в том случае, если нужно ограничить токи короткого замыкания. К примеру, при подсоединении аппаратов для сварки.

КПД

Важной характеристикой генератора считается его КПД — соотношение полезной и полной мощности: η = P 2 / P1. При холостом ходе такое отношение равно нулю (η=0)

При номинальных нагрузках КПД достигнет максимального значения. Мощные агрегаты имеют коэффициент полезного действия около 90 %.


КПД

ЭДС

Электродвижущая сила (ее значение) пропорциональна магнитному потоку, числу проводников (активных) в обмотках, частоте вращения якоря. Если менять последние параметры, то можно легко управлять значением ЭДС. Последнее относится и к напряжению. Нужный результат достигается методом изменения частоты вращения якоря.

Мощность

Выделяют полезную и полную мощности устройства. При постоянной электродвижущей силе полная мощность находится в прямо пропорциональной зависимости от тока: P=EIa. Полезная, которая отдается в цепь, Р1=UI.

Реакция якоря

Если к альтернатору подключить внешнюю нагрузку, то электротоки его обмотки создадут магнитное поле. Тогда возникнет сопротивление полей якоря и статора. Поле будет самым сильным в тех местах, где ротор приближается к магнитным полюсам, очень слабым — в точках максимального удаления. Ротор чувствует магнитное насыщение стальных катушечных сердечников. Сила реакции напрямую зависит от насыщенности в проводах. В результате на пластинках коллекторов будет происходить искрение щеток.


Реакция ротора

Уменьшение реакции достигается при использовании восполняющих магнитных полюсов или передвижением щеток с линии оси.

Принцип работы синхронного генератора переменного тока

Для того, чтобы рассмотреть принцип работы синхронного генератора, наиболее удобно воспользоваться простой моделью синхронной машины. Потому как понять основы принципа работы генератора легче на упрощенной модели, имеющей минимум деталей. Модель, как и реальный генератор, состоит из ротора и статора. Ротор — подвижная (вращающаяся) часть генератора. Статор — неподвижная (статичная) его часть.

Статор состоит из стального сердечника в виде полого цилиндра. Изготовлен статор из множества отдельных тонких листов электротехнической стали. На своей внутренней поверхности статор имеет два продольных паза. Пазы располагаются вертикально напротив друг друга. В этих пазах находятся стороны витка, который является обмоткой статора.

Внутри статора находится ротор генератора. Разумеется, он, как и любой другой ротор, является вращающейся частью генератора. В данном случае ротор — это просто постоянный магнит с двумя полюсами S и N. Ротор посредством вала связывается с двигателем, который вращает этот вал. Безусловно, двигатель может быть какой угодно. Например, для настоящего генератора может применяться двигатель внутреннего сгорания, а также паровая или ветровая турбина.

Двигатель приводит ротор во вращательное движение. Соответственно ротор вращается по часовой стрелке с частотой (n). В результате, в обмотке статора наводится электродвижущая сила (ЭДС), согласно явлению электромагнитной индукции . Если к обмотке статора подключить нагрузку, то в цепи это нагрузки будет течь электрический ток.

ЭДС в обмотке статора появляется следующим образом. Когда ротор вращается, магнитное поле постоянного магнита тоже вращается вместе с ним. Стоит отметить, что вращающееся магнитное поле имеет ту же частоту, что и частота вращения ротора. В результате вращения ротора каждый из проводников обмотки статора оказываются по очереди то в зоне южного полюса магнита S, то в зоне северного полюса N. Разумеется, при смене полюсов изменяется направление ЭДС в обмотке статора. То есть, в обмотке статора индуцируется переменная электродвижущая сила. А потому в цепи нагрузки будет течь переменный электрический ток.

У синхронного генератора частота электродвижущей силы (f) прямо пропорциональна частоте вращения ротора (n). То есть, частота вращения ротора и частота вращения ЭДС синхронны друг другу. А такая частота ЭДС называется синхронной частотой вращения.

p — число пар полюсов статора (для данной упрощенной модели генератора число пар =1),

n — частота вращения ротора (об/мин — оборотов в минуту),

60 — количество секунд в минуте, за которую ротор делает определённое число оборотов.

Для получения электрического тока с промышленной частоты нужно, чтобы и ротор вращался с определенной частотой. Эта частота вращения составляет 3000 об/мин. При такой частоте вращения ротора частота переменного тока будет составлять 50 герц.

В данной упрощенной модели синхронного генератора, для создания магнитного поля, на роторе закреплён постоянный магнит. Такую систему возбуждения применяют лишь на синхронных генераторах малой мощности. В большинстве случаев для того, чтобы получить магнитное поле, на роторе наматывают медную проволочную обмотку возбуждения. То есть, в синхронном генераторе статор является якорем, а ротор индуктором . Выводы этой обмотки подключают к контактным кольцам, расположенным на валу. А на контактные кольца подается питание постоянным током посредством двух неподвижных контактных щеток. В качестве источника питания часто используют генератор постоянного тока. Обычно этот генератор располагают на одном валу с ротором синхронного генератора.

Разумеется, у промышленных синхронных генераторов обмотка статора состоит не из одного витка обмотки, как у упрощенной модели. Как правило, на синхронных генераторах располагают трехфазные обмотки статора. Как уже упоминалось, ротор у синхронного генератора вращается с синхронной частотой. Магнитное поле ротора также вращается с той же самой частотой. При вращении магнитное поле индуцирует в трехфазной обмотке статора переменные ЭДС. Эти ЭДС одинаковы по значению, но сдвинуты по фазе на 120 электрических градусов.

При подключении нагрузки в обмотках статора начинают течь токи. Причем параметры переменного тока, протекающего по этим обмоткам, отличаются друг от друга на 1/3 периода. Одновременно трехфазная обмотка статора создает вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора.

То есть, поле статора и ротор в данном случае вращаются синхронно. Потому подобные генераторы и называются синхронными.

Для вашего удобства подборка публикаций

Источник

Бензиновый агрегат

Для сборки бензинового прибора необходима установка мотоблока и электродвигателя на одной станине с учетом параллельного расположения валов. Посредством двух шкивов будет передаваться вращательный момент от мотоблока к двигателю. Один шкив нужно установить на вал бензинового агрегата, а второй на электромотор. Благодаря правильному соотношению размера шкивов будет определяться частота оборотов ротора мотора.

После установки всех деталей и подключения ременной передачи можно приступить к электрической части:

  1. Обмотку электромотора необходимо соединить по схеме «звезда».
  2. Подключенные конденсаторы к фазам должны образовать треугольник.
  3. Между концом обмотки средней точкой образуется 220 В, а 380 — между обмотками.

Емкость устанавливаемых конденсаторов подбирается в зависимости от мощности электродвигателя. Устройством вырабатывается электроэнергия, а значит, нужно сделать заземление, в противном случае аппарат может быстро изнашиваться или стать причиной поражения током человека.

В качестве устройства с небольшой мощностью можно использовать однофазный двигатель от стиральной машины, дренажного насоса или другого бытового прибора. Так же как и трехфазный мотор, он должен подключаться параллельно обмотке. Также при конструировании можно использовать конденсатор фазового сдвига, но мощность придется увеличивать до нужного предела.

Такие простые приборы с однофазным мотором можно использовать для освещения дома или подключения маломощных электроприборов. При этом переделка схемы может позволить подключение аппарата к обогревателю или электропечи. Таким же образом могут изготавливаться подобные устройства с использованием неодимовых или других постоянных магнитов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Как провести выпрямление тока?

Но если возникает необходимость в получении постоянного тока, вам потребуется знание схемотехники. Нужно 12 или 24 Вольт напряжение? Нет ничего проще, автомобильная электроника придет на помощь. Но только в том случае, если используется обмотка возбуждения в качестве генератора магнитного поля. При использовании постоянных магнитов процедура стабилизации усложняется.

Вариант выпрямителя выбирается, исходя из того, какое количество фаз на выходе генератора. Если одна, то вполне достаточно мостовой схемы, либо вообще на одном диоде (однополупериодный выпрямитель). Если же три фазы на выходе, то возникнет необходимость в использовании шести полупроводников для выпрямления. Также три штуки (по одному на каждую фазу) – для защиты от обратного напряжения.

Вариант 1: переподключение рабочей намотки (однофазный двигатель 220В)

Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

  1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
  2. Вы увидите, что к этой паре подсоединяются две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.


Схема подключения однофазного двигателя

В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

Оценка уровня эффективности – выгодно ли это?

Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?

Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.

Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.

Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.

Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.

Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:

  1. В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
  2. Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
  3. При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.

Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.

Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.

От теории к практике

Давайте построим ветрогенератор от двигателя. Для простого понимания прилагаются инструкции к схеме и видео. Вам понадобится:

  • Устройство для передачи энергии ветра на ротор;
  • Конденсаторы для каждой обмотки статора.

Сложно сформулировать правило, по которому вы можете подобрать устройство, чтобы поймать ветер в первый раз. Здесь следует руководствоваться тем, что когда оборудование работает в режиме генератора, частота вращения ротора должна быть на 10% выше, чем при работе в качестве двигателя. Нужно включить неноминальную частоту, но на холостом ходу. Пример: номинальная частота составляет 1000 об / мин, а в режиме холостого хода 1400. Далее, для выработки электроэнергии необходима частота около 1540 об / мин.

Выбор конденсаторов для емкости производится по формуле:

С — желаемая мощность. Q — частота вращения ротора в оборотах в минуту. П — число «пи», равное 3,14. f — частота фазы (постоянная для России, равная 50 Гц). U — напряжение сети (220, если одна фаза и 380, если три).

Пример расчета : трехфазный оборот ротора при 2500 об / мин. Тогда C = 2500 / (2 * 3,14 * 50 * 380 * 380) = 56 мкФ.

Как подключиться?

Рассмотрим, как создать генератор асинхронного двигателя, например трехфазный двигатель:

  1. Соедините вал с устройством привода ротора за счет энергии ветра;
  2. Подключите конденсаторы по треугольной схеме, подключите вершины к концам звезды или вершинам треугольника статора (в зависимости от типа подключения обмотки);
  3. Если на выходе требуется 220 вольт, необходимо подключить треугольную обмотку (конец первой обмотки — с началом второй, с концом второй — с началом третьей, с концом третьей — с началом первой);
  4. Если вам необходимо питание устройств напряжением 380 В, схема «звезда» подойдет для подключения обмоток статора. Для этого подключите начало всех обмоток и соедините концы с соответствующими емкостями.

Подробные инструкции о том, как сделать однофазный ветрогенератор малой мощности своими руками:

  1. Снимите электродвигатель со старой стиральной машины;
  2. Определите рабочую обмотку и подключите к ней параллельный конденсатор;
  3. Вращайте ротор с силой ветра.

Оказывается, ветряная мельница, как и кино, подаст 220 вольт.

В случае электрических устройств, работающих на постоянном токе, установка выпрямителя дополнительно требуется. А если вас интересует контроль параметров источника питания, установите амперметр и вольтметр на выходе.

Изготовление ветряка

Для создания ветряка потребуется выбрать какой-либо из вариантов конструкции, которых имеется немало. Так, существуют горизонтальные или вертикальные конструкции ротора (в данном случае термин «ротор» обозначает вращающуюся часть ветрогенератора — вал с лопастями, приводимый в движение силой ветра). Горизонтальные роторы имеют более высокую эффективность и устойчивость в производстве энергии, но нуждаются в системе наведения на поток, которая, в свою очередь, нуждается в легкости вращения на валу.

Вертикальные ветряки проще в изготовлении и не требовательны к направлению ветра. При этом, они имеют меньшую эффективность, так как ветер с одинаковой силой воздействует на обе стороны лопасти, затрудняя вращение. Для того, чтобы избежать этого недостатка, создано множество различных конструкций ротора, таких как:

  • ротор Савониуса
  • ротор Дарье
  • ротор Ленца

Известны ортогональные конструкции (разнесенные относительно оси вращения) или геликоидные (лопасти, имеющие сложную форму, напоминающую витки спирали). Все эти конструкции имеют свои достоинства и недостатки, основным из которых является отсутствие математической модели вращения того или иного вида лопастей, делающего расчет крайне сложным и приблизительным. Поэтому действуют методом проб и ошибок — создается экспериментальная модель, выясняются ее недостатки, с учетом которых изготавливается рабочий ротор.

Наиболее простая и распространенная конструкция — ротор Савониуса, но в последнее время в сети появляется множество описаний других ветрогенераторов, созданных на базе других видов.

Устройство ротора несложно — вал на подшипниках, на верхней части которого укреплены лопасти, которые под действием ветра вращаются и передают крутящий момент на генератор. Изготовление ротора осуществляется из доступных материалов, монтаж не требует чрезмерной высоты (обычно поднимают на 3-7 м), это зависит от силы ветров в регионе. Вертикальные конструкции почти не требуют ухода или обслуживания, что облегчает эксплуатацию ветрогенератора.

Источник

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Проект "Стройка"
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: