Принцип действия и устройство генераторов постоянного тока

Устройство генератора переменного тока

Схематическое устройство однофазного 4-полюсного генератора переменного тока. Генератор с вращающимися магнитными полюсами и неподвижным статором.

Автомобильный генератор переменного тока в разрезе. Видны полюсные наконечники.

К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой»), нейтральный провод отсутствует.

По конструкции можно выделить:

  • генераторы с неподвижными магнитными полюсами и вращающимся якорем;
  • генераторы с вращающимися магнитными полюсами и неподвижным статором.

Последние получили большее распространение, так как благодаря неподвижности статорной обмотки отпадает необходимость снимать с ротора большой ток высокого напряжения с использованием скользящих контактов (щёток) и контактных колец.

Подвижная часть генератора называется ротор, а неподвижная — статор.

Статор собирается из отдельных железных листов, изолированных друг от друга. На внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора.

Ротор изготавливается, обычно, из сплошного железа, полюсные наконечники магнитных полюсов ротора собираются из листового железа. При вращении между статором и полюсными наконечниками ротора присутствует минимальный зазор, для создания максимально возможной магнитной индукции. Геометрическая форма полюсных наконечников подбирается такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному.

На сердечники полюсов посажены катушки возбуждения, питаемые постоянным током. Постоянный ток подводится с помощью щёток к контактным кольцам, расположенным на валу генератора.

По способу возбуждения генераторы переменного тока делятся на:

  • генераторы, обмотки возбуждения которых питаются постоянным током от постороннего источника электрической энергии, например от аккумуляторной батареи (генераторы с независимым возбуждением).
  • генераторы, обмотки возбуждения которых питаются от постороннего генератора постоянного тока малой мощности (возбудителя), сидящего на одном валу с обслуживаемым им генератором.
  • генераторы, обмотки возбуждения которых питаются выпрямленным током самих же генераторов (генераторы с самовозбуждением). См также бесщёточный синхронный генератор.
  • генераторы с возбуждением от постоянных магнитов.

Конструктивно можно выделить:

  • генераторы с явно выраженными полюсами;
  • генераторы с неявно выраженными полюсами.

По количеству фаз можно выделить:

  • Однофазные генераторы. См. также конденсаторный двигатель, однофазный двигатель.
  • Двухфазные генераторы. См. также двухфазная электрическая сеть, двухфазный двигатель.
  • Трёхфазные генераторы. См. также трёхфазная система электроснабжения, трёхфазный двигатель.

По соединению фазных обмоток трёхфазного генератора:

  • шестипроводная система Тесла (практического значения не имеет);
  • соединение «звездой»;
  • соединение «треугольником»;
  • соединение шести обмоток в виде одной “звезды” и одного “треугольника” на одном статоре.

Наиболее распространено соединение «звездой» с нейтральным проводом (четырёхпроводная схема), позволяющее легко компенсировать фазовые перекосы и исключающее появление постоянной составляющей и паразитных кольцевых токов в обмотках генератора, приводящих к потерям энергии и перегреву.

Так как на практике в электросетях с множеством мелких потребителей нагрузка на разные фазы не является симметричной (подключается разная электрическая мощность, или например, активная нагрузка на одной фазе, а на другой индуктивная или ёмкостная, то при соединении «треугольником» или «звездой» без нейтрального провода можно получить такое неприятное явление как «перекос фаз», например, лампы накаливания, подключенные к одной из фаз, слабо светятся, а на другие фазы подаётся чрезмерно большое электрическое напряжение и включенные приборы благополучно «сгорают».

К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой») с нейтральным проводом.

К трёхфазному генератору (соединение «треугольником») подключена активная нагрузка (соединение «треугольником»).

Привод генераторов переменного тока


Бензиновый генератор Green-Field GF4500E

В бытовых условиях ротор генератора приводят в действие при помощи двигателей внутреннего сгорания (ДВС), работающих на таких видах топлива, как бензин или дизельное топливо. При этом эксплуатационный ресурс бензиновых генераторов, оснащенных двухтактными ДВС составляет порядка 500 часов в год (не более 4 часов в сутки); четырехтактными ДВС достигает 5000 часов в год.

Использовать бензиновые электрогенераторы целесообразно при непродолжительных отключениях электричества и/или для выезда на природу.

Генераторы, работающие на дизельном топливе, отличаются большой мощностью и значительно долговечнее бензиновых. Среди них встречаются модели с воздушным и жидкостным охлаждением. Агрегаты с воздушным охлаждением рекомендуется применять в тех местах, где электричество отключают часто и надолго.


Дизельный генератор ONIS VISA P 14 FOX

Пользоваться такими бытовыми устройствами предельно просто – нужно залить топливо в бак, поворотом ключа запустить двигатель и подключить нагрузку. Их панель управления снабжена всеми необходимыми и интуитивно понятными надписями и обозначениями.

Дизельные электрогенераторы с жидкостным охлаждением – это устройства совсем другой категории. Они способны работать сутками и используются в основном на предприятиях в качестве источников резервного питания.

Промышленные генераторы, предназначенные для выработки переменного тока и подачи его потребителям на большие расстояния с помощью высоковольтных линий электропередач (ЛЭП), работают за счет активации гидравлических или паровых турбин. В таких агрегатах роторный механизм соединяется непосредственно с колесом турбины.

Турбинные электрогенераторы отличаются большой мощностью (до 100000 кВт) и способны генерировать переменный ток напряжением до 16 кВ. При этом длина и диаметр их ротора может достигать 6,5 и 15 метров соответственно, а скорость вращения последнего находится в диапазоне 1500…3000 об/мин. Устанавливают такие агрегаты в отдельных помещениях на специально подготовленных бетонных основаниях.

С чего начать и что потребуется?

Для того, чтобы собрать небольшой асинхронный генератор своими руками, потребуются такие конструктивные детали:

  1. Двигатель – его можно сделать самостоятельно, но это достаточно длительный и трудоемкий, поэтому лучше сэкономить время и взять двигателя из старых нерабочих бытовых приборов. Хорошо подходят двигателя от стиральной машинки и дренажных насосов.
  2. Статор – лучше брать готовый вариант, где уже будет находиться обмотка.
  3. Провода электрические, а также изолента.
  4. Трансформатор или выпрямитель – нужен в том случае, когда получаемая на выходе электроэнергия имеет различную мощность.

Итак, приступим к работе, предварительно выполнив несколько подготовительных манипуляций, позволяющих произвести расчет мощности будущего генератора:

  1. Подключаем двигатель в сеть, чтобы определить скорость вращения. Для этого нужно воспользоваться специальным прибором – тахометром.
  2. Записываем полученную величину и прибавляем к ней 10%, так называемая компенсаторная величина, которая позволит исключить перенагрев двигателя в процессе работы.
  3. Подбираем конденсаторы, учитывая необходимую мощность. Для удобства величины можно взять из таблицы, расположенной ниже.

Поскольку электрогенератор продуцирует электричество, нужно позаботиться о его заземлении. Отсутствие заземления и плохая изоляция может стать причиной не только быстрого износа прибора, но и представлять опасность для жизни.

Сам процесс сборки крайне прост: к двигателю поочередно подсоединяем конденсаторы, руководствуясь указанной схемой. В схеме отображена поочередность подключения, при этом емкость каждого последующего конденсатора аналогична предыдущему.

Это все, что нужно для получения маломощного генератора, способного снабжать электричеством электропилу, болгарку или циркулярку.

Этот вариант создания генератора самый простой и удобный, но имеет свои нюансы:

Во-первых, придется постоянно следить за температурой двигателя, не давая ему перегреваться.
Во-вторых, если КПД будет снижаться прямопропорционально продолжительности работы – это норма

Поэтому время от времени генератору нужно давать отдыхать, снижая его температуру до 40-45°С.
В-третьих, отсутствие автоматики заставит пользователя самостоятельно контролировать все процессы, периодически подсоединяя измерительные приборы к генератору (вольтметр, амперметр и тахометр).
Перед сборкой важно подобрать правильное оборудование, рассчитав его основные показатели и характеристики. Чертеж и схема значительно облегчат процесс работы.
Генератор на дровах или ветряной можно собрать подобным образом, однако для получения нужного напряжения на выходе потребуется достаточное количество энергоресурса.

Технические параметры

Работа генератора определяется зависимостью между основными величинами, которые являются его главными характеристиками:

  • отношения между величинами на холостом ходу;
  • внешние параметры;
  • регулировочные значения.

Внешняя характеристика генератора постоянного тока крайне важна, так как раскрывает взаимосвязь напряжения и нагрузки. Она отображена на графике. Согласно последнего наблюдается незначительное уменьшение напряжения, но оно почти не зависит от нагрузочного тока (если сохраняется скорость оборотов двигателя).

Внешняя характеристика ГПТ

В устройствах с параллельным возбуждением больше выражено влияние нагрузки на напряжение. Это объясняется уменьшением тока в обмотках. Чем выше ток нагрузки, тем быстрее будет уменьшаться напряжение на зажимах агрегата.

Свойства ГПТ с параллельным возбуждением

Если увеличить величину тока при последовательном возбуждении, то вырастет ЭДС. Но напряжение не достигнет высокого значения электродвижущей силы, так как часть энергии уйдет на потери от вихревых токов.

Свойства ГПТ с последовательным возбуждением

При достижении напряжением максимального значения и одновременным увеличением нагрузки, первое начинает стремительно снижаться в то время, как кривая электродвижущей силы продолжает подниматься. Это считается большим недостатком, ограничивающим использование генератора такого типа.

В устройствах со смешанным возбуждением предвиденные встречные подключения обеих катушек. Конечная сила при однонаправленном подключении равняется сумме векторов намагничивающих сил, при встречном — их разнице.

При равномерном увеличении нагрузки напряжение на зажимах почти не меняется. Оно будет расти лишь тогда, если число проводов последовательной обмотки превышает число витков, которое соответствует номинальному возбуждению якоря.

Свойства ГПТ со смешанным возбуждением

Генераторы со встречным включением применяются в том случае, если нужно ограничить токи короткого замыкания. К примеру, при подсоединении аппаратов для сварки.

КПД

Важной характеристикой генератора считается его КПД — соотношение полезной и полной мощности: η = P 2 / P1. При холостом ходе такое отношение равно нулю (η=0). При номинальных нагрузках КПД достигнет максимального значения

Мощные агрегаты имеют коэффициент полезного действия около 90 %

При номинальных нагрузках КПД достигнет максимального значения. Мощные агрегаты имеют коэффициент полезного действия около 90 %.

КПД

ЭДС

Электродвижущая сила (ее значение) пропорциональна магнитному потоку, числу проводников (активных) в обмотках, частоте вращения якоря. Если менять последние параметры, то можно легко управлять значением ЭДС. Последнее относится и к напряжению. Нужный результат достигается методом изменения частоты вращения якоря.

Мощность

Выделяют полезную и полную мощности устройства. При постоянной электродвижущей силе полная мощность находится в прямо пропорциональной зависимости от тока: P=EIa. Полезная, которая отдается в цепь, Р1=UI.

Реакция якоря

Если к альтернатору подключить внешнюю нагрузку, то электротоки его обмотки создадут магнитное поле. Тогда возникнет сопротивление полей якоря и статора. Поле будет самым сильным в тех местах, где ротор приближается к магнитным полюсам, очень слабым — в точках максимального удаления. Ротор чувствует магнитное насыщение стальных катушечных сердечников. Сила реакции напрямую зависит от насыщенности в проводах. В результате на пластинках коллекторов будет происходить искрение щеток.

Реакция ротора

Уменьшение реакции достигается при использовании восполняющих магнитных полюсов или передвижением щеток с линии оси.

История создания

В конце XIX века компания Роберта Боша впервые разработала нечто похожее на генератор. Устройство было способно зажечь двигатель. В процессе испытаний было выявлено, что машина не подходит для постоянного использования, однако разработчики смогли усовершенствовать аппарата.

В 1890 году фирма практически полностью перешла на производство данного оборудования, так как оно приобрело большую популярность. В 1902 ученик Боша создал зажигание, задействуя высокое напряжение. Устройство было способно добыть искру между двумя электродами свечи, что сделало систему более универсальной.

Начало 60-х годов XX века стало эпохой распространения генераторов по всему миру. И если раньше устройства были востребованы только в автомобилестроении, то сейчас подобные агрегаты способны обеспечить электроэнергией целые дома.

Как работает

Функционирование генератора основывается на свойствах, которые следуют из известного закона электромагнитной индукции. Когда замкнутый контур разместить между полюсами магнита (постоянного), то в условиях вращения он будет проходить через магнитный поток. Во время перехода вырабатывается электродвижущая сила, возрастающая при приближении к полюсу. В случае, если присоединить нагрузку, то образуется поток тока. Когда витки рамки будут выходить из области воздействия магнита, то ЭДС будет уменьшаться и достигнет нуля при горизонтальном положении рамки. При дальнейшем вращении противолежащие контурные части изменят магнитную полярность.


Альтернатор постоянного тока

Значения ЭДС в активных обмотках контура вычисляются по формулах: е1= В I v sin wt, е2= — В I v sin wt, где I — длинна одной стороны рамки, В — магнитная индукция, v — скорость вращения (линейная) контура, t — время, wt — угол пересечения магнитного потока рамкой.

Направление тока меняется в период смены полюсов. Поскольку вращение коллектора происходит одновременно с рамой, то электроток на нагрузке имеет одинаковое направление. Такая схема лежит в основе выработки постоянного электричества. Суммарная ЭДС будет иметь следующий вид: е= 2В I v sin wt.


Принцип действия генератора

Такой ток почти непригоден для применения, поскольку присутствуют пульсации ЭДС. Последние надо уменьшать к допустимому уровню. Для этой цели применяют много магнитных полюсов, рамки заменяют якорями, у которых намного больше обмоток и коллекторов. К тому же, соединение обмоток выполняется разными методами.


Якорь

Ротор производится из стали. В пазы на сердечниках укладываются витки провода, которые составляют рабочую обмотку якоря. Проводники соединяют последовательно. Они образуют секции, создающие замкнутую цепь.

Интересно! Для процесса генерации неважно: вращаются обмотки контура или магнит. По этой причине роторы для маломощных альтернаторов изготавливают из постоянных магнитов, а переменный ток выпрямляют при помощи диодных мостов или иными схемами

Вам это будет интересно Самодельный ионистор

Узнать, из чего состоит генератор постоянного тока, поможет картинка 4.


Устройство машины постоянного тока

Установка состоит из главных узлов:

  • неподвижная часть — главные и дополнительные полюса, станина;
  • вращающаяся часть (якорь) — стальной сердечник, коллектор.

В процессе работы установки ток проводится сквозь обмотку и образуется магнитный поток полюсов. Специальные неподвижные щетки (из сплава графита) способствуют объединению обеих частей генератора в единую цепь.

Устройство и принцип действия генератора постоянного тока за долгий период применения остались прежними, несмотря на некоторые совершенствования.

Устройство динамо-машин

Виток провода, вращающийся между полюсами магнита, за каждый оборот дважды меняет полюса на концах проводника. Чтобы превратить простейшую модель в генератор постоянного тока, необходимо сделать две вещи:

  • отвести ток с витка на нагрузку;
  • организовать протекание отведённого тока только в одном направлении.

Роль коллектора

Устройство, называемое коллектором, способно выполнить обе задачи. Его отличие от контактного щёточного узла в том, что его основу составляет не кольцо из проводника, а набор из сегментов, изолированных друг от друга. Каждый конец вращающегося контура соединён с соответствующим сектором коллектора, а две неподвижные угольные щётки снимают с коммутатора электрический ток.

Коллектор устроен таким образом, что независимо от полярности на концах витка и фазы вращения ротора контактная группа обеспечивает току нужное направление при передаче его на нагрузку. Обмотки в практических динамо состоят из множества сегментов, поэтому для генераторов постоянного тока из-за необходимости их коммутации схема, при которой якорь с индуцируемыми катушками вращается в магнитном поле, оказалась предпочтительнее.

Питание электромагнитов

Классические динамо используют постоянный магнит для индуцирования поля. Остальные генераторы DC нуждаются в питании для электромагнитов. В так называемых раздельно возбуждаемых генераторах для этого используются внешние источники постоянного тока. Самовозбуждающиеся устройства реализуют часть самостоятельно производимого электричества для управления электромагнитами. Запуск таких генераторов после остановки зависит от их возможности накапливать остаточный магнетизм. В зависимости от способа соединения катушек возбуждения с обмотками якоря разделяют:

  • шунтовые (с параллельным возбуждением);
  • сериесные (с последовательным возбуждением);
  • смешанного возбуждения (с комбинацией шунтового и последовательного).

Типы возбуждения применяются в зависимости от требуемого контроля напряжения. Например, генераторы, используемые для зарядки аккумуляторов, нуждаются в простом управлении напряжением. В этом случае подходящим типом будет шунтовой. В качестве машин, генерирующих энергию для пассажирского лифта, применяют отдельно возбуждаемый генератор, так как подобные системы требуют сложного управления.

Применение коллекторных генераторов

Многие генераторы DC приводятся в действие двигателями переменного тока в комбинациях, называемых мотор-генераторными установками. Это один из способов изменения переменного тока на постоянный. Заводы, выполняющие гальванизацию, производящие алюминий, хлор и некоторые другие материалы электрохимическим способом, нуждаются в большом количестве прямого тока.

С помощью дизель-электрогенераторов производится также энергоснабжение DC на локомотивах и судах. Поскольку коллекторы являются сложными и ненадёжными устройствами, зачастую генераторы DC заменяются на машины, производящие AC в сочетании с электронными. Коммутаторные генераторы нашли применение в маломощных сетях, позволяющих использовать динамо на постоянных магнитах без контуров возбуждения.

Что же из себя представляет электрогенератор

   Принцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение) в энергию электрическую. Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один — Э.Д.С., изменяющаяся по гармоническому закону.

Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно.

Синхронный электрогенератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита.

Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется «реакцией якоря». Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR. Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать. Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.

Асинхронный электрогенератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным.

Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируется, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции. Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

Неисправности автогенераторов и способы их устранения

При работе генераторов могут возникать неисправности механического и электрического характера. Зачастую одна вовремя не исправленная поломка становится причиной других.

Признаки повреждения генератора:

  • мигание или постоянная работа лампы зарядки при работающем моторе;
  • недостаточная зарядка или перезаряд аккумулятора;
  • тусклый свет внешней световой сигнализации;
  • пульсации свечения ламп;
  • значительное увеличение яркости свечения ламп при повышении оборотов;
  • посторонние звуки, источником которых является генератор или привод.

Механические поломки

Распространенные неисправности механического характера:

  • появление трещин на приводном шкиве;
  • обрыв ремня привода;
  • износ подшипников якоря, который приводит к заклиниванию генератора.

Трещины и сколы на шкиве обнаруживаются при визуальном осмотре узла. Острые кромки начинают разрушать приводной ремень, который может сойти со шкива по поврежденным кромкам. Поломанный или лопнувший шкив требуется заменить новым, ремонт узла невозможен. Новый шкив должен иметь такие же геометрические параметры, как и изношенный.

Поврежденные подшипники якоря начинают издавать при работе характерный свист. Затягивать с ремонтом не следует, поскольку нарушается режим работы генератора из-за изменения зазора между якорем и статором. В итоге якорь может заклинить, что приведет к обрыву ремня и повреждениям щеток и обмотки.

Электрические поломки

Поломки электрической части генераторов:

  • истирание токосъемных щеток;
  • протирание коллекторной части ротора генератора;
  • выход из строя регулятора напряжения;
  • межвитковые замыкания обмотки статора;
  • выгорание выпрямительного диодного моста;
  • разрушение соединительной проводки;
  • обгорание или окисление мест подключения проводки.

Для проверки работоспособности генератора применяется мультиметр или вольтметр, предназначенный для измерения постоянного напряжения 0-20 В. Перед началом замеров рекомендуется прогреть агрегат, дав ему поработать 10-15 минут при холостых оборотах двигателя и работающем потребителе (например, ближнем свете фар). Замер напряжения между положительной клеммой генератора и массой автомобиля должен показать значение в пределах 13,5-14,5 В. Более точная информация имеется в инструкции по ремонту и обслуживанию машины. При отклонении напряжения от норматива требуется замена реле-регулятора.

Проверка напряжения на клеммах батареи позволяет обнаружить повреждения соединительной проводки. Для полноценного замера требуется увеличить обороты двигателя до высоких и подключить мощные потребители энергии (например, дальний свет фар, обогревы стекол и сидений). В этом случае напряжение должно быть близким к значению на реле-регуляторе. В противном случае требуется провести проверку проводов и точек подключения.

Исправность диодного моста проверяется путем установки мультиметра на положительный вывод генератора и массу в режиме замера переменного тока. Значение напряжения должно находиться в пределах до 0,5 В. Более высокое напряжение является признаком неисправности диодного моста.

Процесс замены генератора на Форд Фокус 2 показан в видео, предоставленном каналом «Азбука Форд».

Замер пробоев обмоток генератора производится при отключенном аккумуляторе и отсоединенной от положительной клеммы устройства проводке. Тестер, переключенный в режим амперметра, подключается между клеммой и проводкой. Допустимым считается значение до 0,5 мА. При повышенном токе возможен пробой деталей диодного моста либо обмоток.

Для проверки обмоток возбуждения необходимо снять генератор с автомобиля. Работы ведутся при удаленном регуляторе напряжения и щеточном узле. Перед началом проверки контактные кольца очищаются от грязи. Тестирование выполняется мультиметром, переведенным в режим омметра. Подключение ведется к контактным кольцам. Нормальное значение сопротивления находится в интервале 5-10 Ом. Для замера пробоя на массу омметр цепляется к кольцам и корпусу. В исправном состоянии значение сопротивления будет бесконечным, при иных значениях — имеется пробой.

Категорически запрещается проверять работу генераторов методом короткого замыкания. Подобные действия приводят к выходу из строя не только агрегата, но и электронных блоков. Диагностику устройства рекомендуется проводить на стендах, имеющихся в специализированных центрах. Самостоятельные действия могут стать причиной дорогостоящего ремонта.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Проект "Стройка"
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector